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Abstract Interest in real-time model-based control is increasing as more and more facilities are being asked

to meet stricter effluent requirements while at the same time minimizing costs. It has been identified that

biological process models and automated process control technologies are being used at wastewater

treatments plants throughout the world and that great potential for optimising biotreatment may exist with

the integration of these two technology areas. According to our experience, wastewater treatment plants are

indeed looking for ways to successfully integrate their modelling knowledge into their process control

structure; however, there are practical aspects of this integration that must be addressed if the benefits of

this integration are to be realised. This paper discusses the practical aspects of monitoring, filtering and

analysing real sensor data with an aim to produce a reliable real-time data stream that might be used within

a model-based control structure. Several real case study examples are briefly discussed in this paper.
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Introduction

Several things have contributed to the limited application of advanced model-based con-

trol at wastewater treatment facilities. First and foremost is reliability (Hill et al., 2002).

Operations staff must have confidence in the system and the system must be both reliable

and robust in that alarm signals must be kept to a minimum, and those alarms must be

useful. Historically, a lack of confidence may have been the result of sensor reliability

and, maintenance requirements and as a result, operator reluctance to trust sensors. Sen-

sor technology has improved significantly making the timing of on-line implementation

pertinent. Operators are often interested in advanced control systems, but demonstrating

the benefits and minimising the problems is crucial. Simulations have been used to pre-

dict the benefits of proposed control strategies using off-line historical data. This has

worked well and gives a relative indication of the benefits if the plant had been operating

with the strategy; however, because the simulations are based on historical data, there is

no guarantee that things have not changed.

Although process control is widely implemented without process models, the use of

process models for optimisation is becoming increasingly popular. That is, a calibrated

process model can be used to identify process inefficiencies including the impact of over-

aeration, sub-optimal pump rates and the impact of specific control loops on the process

behaviour. This ability to predict the performance of a system results in better process

understanding and enables a more accurate accounting of possible control options. The

need for a process model is particularly important if a plant wishes to investigate multi-

variable control.

One of the most advanced implementations of on-line model-based control has been

the development of the Integrated Computer Control System (IC2S) by Hydromantis Inc.

(Belia and Takacs, 2002; Takacs et al., 1998). IC2S was based on the premise that an
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integrated computer-based approach to wastewater treatment plant operation and control

can have a significant impact on the performance of a plant, including:

† reduction in the duration and frequency of water quality effluent excursions

† reduction in energy costs

† deferred capital expenditures

† optimal use of existing facilities

† ability to cope with unusual plant operation conditions

† reduction in the overall pollutant loadings to receiving water bodies.

Although the theoretical benefits of real-time model-based control are evident, the practi-

cal aspects of implementing such a system must be addressed. That is, in an ideal world,

the data fed to the model will be correct without error, but in reality this is not possible

so care must be taken to ensure that a reliable data stream is used. This paper focuses on

the practical aspects of dealing with sensor data and discusses issues that can occur with

real sensor data and other control issues that can be overlooked.

Fault detection

Successfully implementing process control requires a reliable stream of data. As a result,

sensor and process fault detection algorithms can be an important aspect of a control sys-

tem. There are up to three elements to such a fault detection module. Preliminary sensor

fault detection is performed on monitored signals, intermediate fault detection compares

filtered and measured outputs while advanced fault detection tracks process trends.

Preliminary sensor fault detection

Sensor signals are subject to a number of possible errors including, but not limited to:

noise, drift, catastrophic failure, power outages and transmission problems. Low-level

sensor fault detection is essential so that the data stream fed to the control system is a

reasonable estimate of the current state of the plant. The objective is to process the raw

signals and this may involve some or all of the following:

† ensuring measurements are within the 4 to 20mA range

† detecting constant signals

† detecting sudden changes

† dealing with missing measurements (catastrophic sensor failure)

† filtering of the measurements.

Sensor signals operate in the range of 4 to 20mA, so detection of signals outside this

typical range is important. For example, a signal outside this range might indicate a sen-

sor malfunction, a power failure or a transmission failure. Detection of these anomalies is

crucial to prevent potential process upsets due to incorrect control actions. The constantly

changing conditions in a wastewater treatment plant mean that sensor signals are

expected to change continuously. Hence, the detection of a constant signal might also

indicate a problem such as a sensor malfunction, a dirty sensor or a sensor that is off-

line. Large instantaneous changes in sensor signals can occur and might be real depend-

ing on the sensor, but this type of change might also indicate a process disturbance, an

unreliable measurement or an abrupt sensor failure.

Another step in the processing involves filtering the raw signals because often

measurements contain high-frequency components caused by electrical interference,

measurement noise and uncontrollable process disturbances. If the control system acts on

these high-frequency components, the performance may be undesirable and therefore

these components should be removed from the measured signal.

It is important to examine historical measurement data to determine how much filter-

ing is required. Different measurements can have varying degrees of noise depending on
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the variable being measured, the type of sensor being used and the location of the sensor

in the process. In addition, filtering should consider the dynamics of the process being

controlled. Because the goal of filtering is to remove high frequency noise from the

measurements, a first-order digital low pass filter as shown below might be used. In this

case, the digital filter calculates an exponentially weighted moving average (EWMA) and

might be implemented as follows:

Xfiltered;n ¼ a*Xfiltered;n21 þ ð12 aÞ*Xn

where Xfiltered,n ¼ filtered sensor value at time, n; Xfiltered,n21 ¼ filtered sensor value at

time, n 2 1; a ¼ filter constant; and Xn ¼ sensor value at time, n.
In this case, the degree of filtering increases as a is increased. Sensors that produce

inherently noisy signals will require more filtering. The value of the low-pass filter con-

stant should be selected to achieve a balance between noise attenuation and dynamic

response. Suitable values of the filter constant(s) can be determined by experimenting

with different filter constants and plotting the filtered response, or using more advanced

techniques such as frequency response analysis.

As an example of filtering, consider the total suspended solids (TSS) measurements

from a wastewater treatment plant as shown in Figure 1a. The filter constant used was

0.9 (in this case corresponding to a filter time constant of 135min). The filtered response

follows the major trends in the data but removes noise including large instantaneous

spikes without a large time delay. If these data were being used for mixed liquor sus-

pended solids (MLSS) or sludge retention time (SRT) control, more filtering might be

beneficial. A control system based on manipulating the waste flow could not, and typi-

cally should not, be used to mitigate the diurnal variations that occur during each day. If

a filter constant of 0.99 is used most of the diurnal variations that cannot be controlled

are removed as shown in Figure 1b.

In some cases, filtering may cause problems. As shown in Figure 2, with an intermit-

tent flow rate and a moderate filter constant of 0.7, the filtered response ceases to accu-

rately track the signal. In this case, the signal does not contain much noise and a better

approach might be to perform a minimal amount of filtering (filter constant of 0.1 for

example) or no filtering at all.

The low-pass filter discussed above is one of many possible digital filter equations.

Other higher-order filter equations can be generated and their filter constants can be

designed appropriately.

Intermediate fault detection

The filtering step can be used for determining other sensor problems. In addition to filter-

ing the raw signals, the filtered and unfiltered sensor signals can be analysed to determine
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Figure 1 Filtering of TSS data with filter constant of (a) 0.9 and (b) 0.99
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sensor or process faults. This can include checking if signals are outside physically realis-

tic boundaries, tracking changes in the variance of the measurement noise and identifying

incompatible sensor results (e.g. ammonia . TN).

Detection of signals outside a physically realistic boundary is relatively straightfor-

ward, but there are less obvious signal limits that need to be considered. These bounds

should be the extreme operating conditions expected for each sensor signal. In this case,

it is best to monitor the filtered signals as opposed to the raw signals as the raw signals

(especially noisy signals) might be prone to large instantaneous upward or downward

spikes that may extend outside normal operating ranges. Monitoring the filtered signals is

a better indication of persistent problems.

The variance in the noise of a signal is expected to be reasonably constant and, as

such, if the noise level of a sensor signal changes, it may indicate that the sensor is dirty,

malfunctioning or could be an indication of a process related disturbance. This fault can

be identified by calculating the variance in the residuals between the filtered and

measured values. The calculated variance over a period of time is then compared to the

variance calculated over a historical time period and a warning is triggered if the differ-

ence is substantial. The variance changes that can occur in a measurement signal are

illustrated in Figure 3a, which shows another example of TSS measurements from a

wastewater treatment plant. As shown, the variability in the measurements starts to

increase steadily after 2 days. If the data is filtered with a filter constant of 0.9 and the fil-

ter residuals are plotted, as shown in Figure 3b, it is apparent that the variability of the

residuals steadily increases, possibly indicating that the sensor is becoming dirty.

Incompatible sensor signals should be detected where possible. Redundant signals

should be similar and related signals should make sense. For example, if ammonia and

TN sensors are located in the same location, then the signals from these sensors must

show a lower ammonia concentration.
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Figure 2 Filtering of flow rate data with filter constant of 0.7
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Figure 3 TSS sensor data with increasing variability (a) and the relative filter residuals for the same data (b)
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Detection of a problem is essential but it is also necessary to activate a default control

action until the problem is investigated. That is, if a fault is suspected, then a reasonable

response would be to revert any control action involving the suspect signal to a default or

manual operation mode until the source of the detected problem is investigated. A sum-

mary of fault detection techniques from this paper is given in Table 1.

The above techniques are simple sensor fault detection techniques that are easy to

implement and often found in commercial process controllers. More sophisticated statisti-

cal techniques, such as data reconciliation, can be used to identify persistent sensor biases

not easily detected by simpler methods. Data reconciliation is a technique used to adjust

process measurements so that they are consistent with known process constraints such as

mass balances. Detailed discussions of data reconciliation can be found elsewhere

(Crowe 1996; Romagnoli and Sánchez, 2000).

Advanced fault detection

Advanced fault detection can be used to detect process upsets and disturbances. As with

sensor fault detection, process fault detection can range from simple tests to sophisticated

statistical analyses. A simple fault detection system could involve checking for trends in

the data using the Mann–Kendall test (Olsson and Newell, 1999). If a trend is detected, a

curve could be fit to the data and the model parameters could be compared to typical

values for the process when it is relatively stationary. More advanced process fault detec-

tion techniques can involve the use of the data reconciliation techniques discussed earlier

or statistical process control charts. Statistical process control techniques typically

involve tracking or monitoring process variables (or parameters derived from process

data) over time using statistical control charts. The variables of interest are charted over

time and compared to control limits to determine if the process is within control.

Because wastewater treatment plant measurements can exhibit autocorrelation, season-

ality and non-constant variance (Berthouex, 1989), it can be difficult to apply traditional

control charts such as Shewhart or cumulative sum (CUSUM) charts. In this context, it is

possible to fit a time-series model such as an auto-regressive integrated moving average

(ARIMA) model to normal operating data and then use the model as a charting tool

(Berthouex, 1989). The model would be used to continually predict process data, given the

previous data, and the difference between these predictions and the actual measurements

(i.e. residuals) which can be plotted on a conventional control chart. When the process is

operating normally, the residuals will be independent, random and have constant variance.

A simpler alternative is to construct EWMA charts. The EWMA statistic is the

optimal one-step-ahead forecast for the ARIMA(0,1,1) model (Montgomery and

Mastrangelo, 1991):

Table 1 Summary of simple sensor fault detection methods

Type of fault Fault detection method

Measurement outside 4 to 20mA range Test whether signal is less than 4mA or greater
than 20mA

Violation of user-defined normal bounds on
measurement

Test whether filtered signal is outside user-defined
bounds

Constant measurement Test whether signal has been constant over an
extended period

Large instantaneous change in measurement Determine if absolute value of residual is reasonable
Change in noise variance Determine if current variance is significantly different

from historical variance
Sensor results incompatible Comparison of redundant signals, and/or the

calculated values of related sensors (i.e. TN .

ammonia)

O
.
S
chraa

et
al.

379



www.manaraa.com

Yt ¼ Yt21 þ 1t 2 u1t21

where a ¼ (1 2 u); Yt ¼ observation from the modelled process at sample time, t;

1t ¼ independently and identically distributed random variable at sample time, t; u ¼

moving average parameter.

Therefore, the one-step-ahead prediction errors (i.e. residuals between predictions and

actual measurements) for an ARIMA(0,1,1) process, calculated using the EWMA stat-

istic, can be plotted on a traditional control chart. As discussed by Montgomery and

Mastrangelo (1991), the EWMA approach can be a reasonable approximation of the

ARIMA model approach in many cases. For a suitably selected value of a, the EWMA

statistic is an excellent one-step-ahead predictor for processes where the mean does not

shift too rapidly and the observations are positively autocorrelated. The EWMA statistic

is discussed by Hunter (1986).

The above discussion of control charts considers the univariate case. In the

multivariate case, where it is desirable to simultaneously monitor many variables from

the same process, the above procedures can be used and Hotelling T 2 charts can be con-

structed for several related variables. Some researchers have looked at the use of multi-

variate statistical techniques, such as principal components analysis (PCA) to monitor

wastewater treatment data. PCA involves the singular value decomposition of the

measurement covariance matrix in order to project the measurement space into a lower

dimensional space that is easier to visualise. The variables in the lower dimensional

space explain the majority of the variance in the process variables. Although PCA con-

siders static covariance relationships, it can be adapted to the analysis of dynamic data.

Lennox and Rosen (2002) used adaptive multiscale PCA for online monitoring of waste-

water treatment data.

Practical examples

Sensor faults

As an example of a malfunctioning sensor, consider the TSS data shown in Figure 3. As

shown, there are extended periods where the signal is constant indicating a problem such

as sensor failure, a dirty sensor or that the sensor has been switched out of data collection

mode. There is also a period where the signal becomes extremely noisy with some large

instantaneous spikes. Again this suggests that the sensor is malfunctioning or dirty.

Because visual inspection of data is usually not feasible, it is important to provide

automated procedures to identify sensor faults. Tests to check for constant signals and

variance changes could be used to identify faults such as those shown in Figure 4.
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Figure 4 TSS sensor data from a dirty or malfunctioning sensor
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Handling of unexpected power interruptions

Power interruptions are another potential fault that can cause problems for controllers. As

with sensor faults, they compromise the information used to calculate control actions.

The handling of controller startup or initialization after power interruptions is straightfor-

ward in cases where the controlled variable is measured directly but needs careful

consideration for controllers that use measurements to infer the value of the controlled

variable such as in SRT control. If the controller is a remote unit located in the field and

an unexpected power interruption occurs, it is necessary to ensure that the inferred vari-

able is properly re-initialized at startup. This may entail archiving past measured values

or SRT values so that a reasonable SRT estimate is available for re-intialization of the

controller. As an example, consider an averaged SRT tracked at an activated sludge plant

as shown in Figure 5. If the averaged SRT is re-intialized using the current information

after an unexpected power interruption the calculation will require considerable time to

move towards the true SRT. If past SRT values are archived and used for re-initialization,

the SRT calculation will take less time to resume tracking the true SRT.
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SRT calculation
reinitialised with current
information only

Averaged SRT without proper re-initialisation after
power interrupt

True Averaged SRT

Figure 5 Issue with re-initialising SRT calculation after a power interruption

Figure 6 Integral windup when supervisory control system does not implement control actions from

lower-level controller
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Controller windup

Integral windup is another potential issue for controllers and requires mitigation in all

controllers that have integral action. The issue of controller windup is well understood

for the situation where the controller cannot compensate for disturbances because of limi-

tations in the final control element. It can also occur in cases where a lower-level control-

ler sends its output to a supervisory control system. If the supervisory control system

does not implement the control action from the lower-level controller, the potential for

integral windup also exists, as shown in Figure 6. In this case, when the lower-level con-

troller regains control of the manipulated variable there is a potential for a large instan-

taneous change to occur in the manipulated variable as it is adjusted to match the

controller output. It is important to ensure that the controller does not accumulate differ-

ences between the calculated control action and the control action actually implemented.

Therefore, measurement and archiving of the manipulated variable is important.

Conclusion

Real-time control is dependent on sensor data and even though significant improvements

have been made in wastewater treatment sensor technology, sensor signals are still subject

to a number of possible errors including, noise, drift, catastrophic failure, power outages

and transmission problems. Hence for model-based on-line control that attempts to deduce

many aspects of the process from a minimum number of samples, there still exists a need

to ensure that the sensor signals are accurate and reflect the true state of the process so that

the control scheme is working on the best possible data. Signal processing is complicated

by the various potential problems and, as such, considerable care must be taken when

designing appropriate algorithms as each signal will have independent characteristics that

have to be taken into consideration.
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